Abstract
A key feature in population based optimization algorithms is the ability to explore a search space and make a decision based on multiple solutions. In this paper, an incremental learning strategy based on a dynamic particle swarm optimization (DPSO) algorithm allows to produce heterogeneous ensembles of classifiers for video-based face recognition. This strategy is applied to an adaptive classification system (ACS) comprised of a swarm of fuzzy ARTMAP (FAM) neural network classifiers, a DPSO algorithm, and a long term memory (LTM). The performance of this ACS with an ensemble of FAM networks selected among local bests of the swarm, is compared to that of the ACS with the global best network under different incremental learning scenarios. Performance is assessed in terms of classification rate and resource requirements for incremental learning of new data blocks extracted from real-world video streams, and are given along with reference kNN and FAM classifier optimized for batch learning. Simulation results indicate that the learning strategy maintains diversity within the ensemble classifiers, providing a significantly higher classification rate than that of the best FAM network alone. However, classification with an ensemble requires more resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.