Abstract

AbstractA specific characteristic of sensor network applications is that the major traffic consists of data collection from various sensor source nodes to a sink via a unidirectional tree. In this paper, we propose DMAC, an energy efficient and low latency MAC that is designed and optimized for such data gathering trees in wireless sensor networks. We first show that previously proposed MAC protocols for sensor networks that utilize activation/sleep duty cycles suffer from a data forwarding interruption problem, whereby not all nodes on a multihop path to the sink can be notified of data delivery in progress, resulting in significant sleep delay. DMAC is designed to solve the interruption problem, by giving the active/sleep schedule of a node an offset that depends upon its depth on the tree. This scheme allows continuous packet forwarding because all nodes on the multihop path can be notified of the data delivery in progress. DMAC also adjusts node duty cycles adaptively according to the traffic load in the network by varying the number of active slots in an schedule interval. We further propose a data prediction mechanism and the use of more to send (MTS) packets in order to alleviate problems pertaining to channel contention and collisions. Our simulation results as well as experimental results with the Mote platform show that by exploiting the application‐specific structure of data gathering trees in sensor networks, DMAC provides significant energy savings and latency reduction while ensuring high data reliability. Copyright © 2007 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.