Abstract

In this paper, we propose a dynamically low-dimensional approximation method to solve a class of time-dependent multiscale stochastic diffusion equations. In Cheng et al. (2013) a dynamically bi-orthogonal (DyBO) method was developed to explore low-dimensional structures of stochastic partial differential equations (SPDEs) and solve them efficiently. However, when the SPDEs have multiscale features in physical space, the original DyBO method becomes expensive. To address this issue, we construct multiscale basis functions within the framework of generalized multiscale finite element method (GMsFEM) for dimension reduction in the physical space. To further improve the accuracy, we also perform online procedure to construct online adaptive basis functions. In the stochastic space, we use the generalized polynomial chaos (gPC) basis functions to represent the stochastic part of the solutions. Numerical results are presented to demonstrate the efficiency of the proposed method in solving time-dependent PDEs with multiscale and random features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.