Abstract
The peridynamic theory is advantageous for problems involving damage since the peridynamic equation of motion is valid everywhere, regardless of existing discontinuities, and an external criterion is not necessary for predicting damage initiation and propagation. However, the current solution methods for the equations of peridynamics utilize explicit time integration, which poses difficulties in simulations of most experiments under quasi-static conditions. Thus, there is a need to obtain steady-state solutions in order to validate peridynamic predictions against experimental measurements. This study presents an extension of dynamic relaxation methods for obtaining steady-state solutions of nonlinear peridynamic equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.