Abstract

AbstractThis article investigates the problem of optimal observer‐based sliding mode control (SMC) of connected vehicles subject to deception attacks and disturbances with adaptive dynamic programming (ADP) method. For a group of vehicles with unknown nonlinear dynamics term and disturbance, this article aims to give a control methodology to achieve secure tracking of the desired spacing, velocity and acceleration. A neural network (NN) and an observer are constructed to estimate the unknown nonlinear term and the states, respectively. Then, a SMC scheme incorporating NN approximation is developed and an off‐policy ADP method is used to implement the optimal control of sliding mode dynamics. The proposed method can ensure individual stability and string stability of the set of vehicles. Numerical simulations are conducted to demonstrate the validity of the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.