Abstract
One of the most widely used techniques for controlling the dc microgrid is the droop control method. The associated problems of the droop-based systems, such as the current sharing errors and the voltage deviation are solved using current sharing loops and secondary control loop, respectively. This paper presents an adaptive droop scheme for dc microgrids to overcome the non-linearity of the system. The droop resistance is adjusted using the adaptive PI controller to eliminate the current sharing error of each unit in the microgrid. In addition, another adaptive PI controller is dedicated for the secondary loop to regulate the dc bus voltage of the microgrid by shifting the droop lines. In the proposed scheme, only the current and voltage at the dc bus of the microgrid need to transmit through low-bandwidth communication channels to individual units. Moreover, the sliding mode control, which is distinguished by robustness and fast dynamic response, is utilized to manipulate the output voltage and the input current of each converter, instantaneously. The dynamic performance of the proposed adaptive droop scheme is evaluated using the PSCAD/EMTDC simulation package.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.