Abstract

Selective Laser Sintering (SLS) has recently become one of the fastest growing additive manufacturing processes due to its capability of fabricating metal parts with high dimensional accuracy and surface quality. Physical modeling of this process plays an important role in properly controlling the process parameters of the process. In this paper, we present a 3 dimensional, adaptive discrete element method for simulation of the SLS process on personal computers. The presented method models the laser-powder interaction at particle level, achieving high simulation accuracy while adaptively increasing the discrete element size as local temperatures drop inside the powder bed for improved efficiency. Numerical shape functions are developed for calculating individual particle temperatures at any point during the simulation. Results show that this physical model improves the runtime significantly in virtual simulation of SLS process without loss of simulation accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.