Abstract

At present, black-box and simulation-based optimization problems with multiple objective functions are becoming increasingly common in the engineering context. In many cases, the functional relationships that define the objective and constraints are only known as black-boxes, cannot be differentiated accurately, and may be subject to unexpected failures. Directional direct search techniques, in particular the direct multisearch (DMS) methodology, may be applied to identify Pareto fronts for such problems. In this work, we propose a mechanism for adaptively selecting search directions in the DMS framework, with the goal of reducing the number of black-box evaluations required during the optimization. Our method relies on the concept of simplex derivatives in order to define search directions that are optimal for a local, linear model of the objective function. We provide a detailed description of the resulting algorithm and offer several practical recommendations for efficiently solving the associated subproblems. The overall performance in an academic context is assessed via a standard benchmark. Through a realistic case study, involving the bi-objective design optimization of a mechatronic quarter-car suspension, the performance of the novel method in a multidisciplinary engineering setting is tested. The results show that our method is competitive with standard implementations of DMS and other state-of-the-art multi-objective direct search methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call