Abstract

AbstractThis paper presents an adaptive maintenance model for equipment that can be adjusted (minor preventive maintenance, imperfect state) or replaced (major preventive maintenance, as good as new) at specific scheduled times based on degradation measurements. An initial reliability law that uses a degradation‐based model is built from the collection of hitting times of a failure threshold. Inspections are performed to update the reliability, the remaining useful life, and the optimum time for preventive maintenance. The case of both as good as new replacements and imperfect adjustments is considered. The proposed maintenance model is based on the optimization of the long‐term expected cost per unit of time. The model is then tested on a numerical case study to assess its effectiveness. This results in an improvement for the occurrences of maintenance tasks that minimizes the mean cost per unit of time as well as an optimized number of adjustments that can be considered before replacing an item. The practical application is a decision aid support to answer the 2 following questions: Should we intervene now or wait for the next inspection? For each intervention, should we adjust or replace the item of equipment? The originality is the presence of 2 criteria that help the maintainer to decide to postpone or not the preventive replacement time depending on the measured degradation and to decide whether the item should be adjusted or replaced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call