Abstract

The feedforward control can effectively improve the servo performance in applications with high requirements of velocity and acceleration. The iterative feedforward tuning method (IFFT) enables the possibility of both removing the need for prior knowledge of the system plant in model-based feedforward and improving the extrapolation capability for varying tasks of iterative learning control. However, most IFFT methods require to set the number of basis functions in advance, which is inconvenient to the system design. To tackle this problem, an adaptive data-driven IFFT based on a fast recursive algorithm (IFFT-FRA) is developed in this article. Explicitly, based on FRA, the proposed approach can adaptively tune the feedforward structure, which significantly increases the intelligence of the approach. Additionally, a data-based iterative tuning procedure is introduced to achieve the unbiased estimation of parameters optimization in the presence of noise. Comparative experiments on a linear motor confirm the effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.