Abstract

Network embedding aims to learn a latent representation of each node which preserves the structure information. Many real-world networks have multiple dimensions of nodes and multiple types of relations. Therefore, it is more appropriate to represent such kind of networks as multiplex networks. A multiplex network is formed by a set of nodes connected in different layers by links indicating interactions of different types. However, existing random walk based multiplex networks embedding algorithms have problems with sampling bias and imbalanced relation types, thus leading the poor performance in the downstream tasks. In this paper, we propose a node embedding method based on adaptive cross-layer forest fire sampling (FFS) for multiplex networks (FFME). We first focus on the sampling strategies of FFS to address the bias issue of random walk. We utilize a fixed-length queue to record previously visited layers, which can balance the edge distribution over different layers in sampled node sequences. In addition, to adaptively sample node's context, we also propose a metric for node called Neighbors Partition Coefficient (N P C ). The generation process of node sequence is supervised by NPC for adaptive cross-layer sampling. Experiments on real-world networks in diverse fields show that our method outperforms the state-of-the-art methods in application tasks such as cross-domain link prediction and shared community structure detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.