Abstract

ABSTRACTEnsemble filter methods for combining model prior estimates with observations of a system to produce improved posterior estimates of the system state are nowbeing applied to a wide range of problems both in and out of the geophysics community. Basic implementations of ensemble filters are simple to develop even without any data assimilation expertise. However, obtaining good performance using small ensembles and/or models with significant amounts of error can be more challenging.Anumber of adjunct algorithms have been developed to ameliorate errors in ensemble filters. The most common are covariance inflation and localization which have been used in many applications of ensemble filters. Inflation algorithms modify the prior ensemble estimates of the state variance to reduce filter error and avoid filter divergence. These adjunct algorithms can require considerable tuning for good performance, which can entail significant expense. A hierarchical Bayesian approach is used to develop an adaptive covariance inflation algorithm for use with ensemble filters. This adaptive error correction algorithm uses the same observations that are used to adjust the ensemble filter estimate of the state to estimate appropriate values of covariance inflation. Results are shown for several low-order model examples and the algorithm produces results that are comparable with the best tuned inflation values, even for small ensembles in the presence of very large model error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.