Abstract
A direct adaptive controller for trajectory tracking of high-speed robots such as a direct-drive SCARA robot is presented. In this robot, nonlinear effects due to centrifugal, Coriolis, and inertial forces are more important than friction and gravity forces, unlike most industrial robots. The control law of the adaptive scheme consists of a PD regulator plus feedforward compensation of full dynamics. The feedforward terms are adjusted by an adaptation law so that the steady-state position errors are zero. With this adaptive controller, the joint acceleration measurement is not required and no inversion of the estimated mass matrix is involved. The tracking performances of the controller applied to a two-degree-of-freedom SCARA is illustrated by a real-time implementation based on a single-chip digital signal processor (DSP). >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.