Abstract

This article presents an adaptive technique to tune controller gains for the motion synchronization of two gimbal systems by using a recursive least square method in the real-time fashion. In the master-slave configuration, the slave gimbal system follows the master’s motion while the master tracks the reference. In order for the slave gimbal system to synchronize with the motion of the master gimbal system, the dynamic difference between two systems is compensated by the controller gains. The controller gains of the slave are adaptively adjusted by the recursive least square method to cope with the deviation. The performances of three control schemes such as an independent PD control, a dependent torque control, and an RLS torque control scheme are evaluated by the experimental studies for the low cost gimbal systems. Experimental studies confirm that the RLS-based adaptive scheme actually outperforms by adjusting controller gains for the motion synchronization of the master and slave configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.