Abstract

We consider the Cahn-Hilliard equation for solving the binary image inpainting problem with emphasis on the recovery of low-order sets (edges, corners) and enhanced edges. The model consists in solving a modified Cahn-Hilliard equation by weighting the diffusion operator with a function which will be selected locally and adaptively. The diffusivity selection is dynamically adopted at the discrete level using the residual error indicator. We combine the adaptive approach with a standard mesh adaptation technique in order to well approximate and recover the singular set of the solution. We give some numerical examples and comparisons with the classical Cahn-Hillard equation for different scenarios. The numerical results illustrate the effectiveness of the proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.