Abstract
The phase II basket trial in oncology is a novel design that enables the simultaneous assessment of treatment effects of one anti-cancer targeted agent in multiple cancer types. Biomarkers could potentially associate with the clinical outcomes and re-define clinically meaningful treatment effects. It is therefore natural to develop a biomarker-based basket design to allow the prospective enrichment of the trials with the adaptive selection of the biomarker-positive (BM+) subjects who are most sensitive to the experimental treatment. We propose a two-stage phase II adaptive biomarker basket (ABB) design based on a potential predictive biomarker measured on a continuous scale. At Stage 1, the design incorporates a biomarker cutoff estimation procedure via a hierarchical Bayesian model with biomarker as a covariate (HBMbc). At Stage 2, the design enrolls only BM+ subjects, defined as those with the biomarker values exceeding the biomarker cutoff within each cancer type, and subsequently assesses the early efficacy and/or futility stopping through the pre-defined interim analyses. At the end of the trial, the response rate of all BM+ subjects for each cancer type can guide drug development, while the data from all subjects can be used to further model the relationship between the biomarker value and the clinical outcome for potential future research. The extensive simulation studies show that the ABB design could produce a good estimate of the biomarker cutoff to select BM+ subjects with high accuracy and could outperform the existing phase II basket biomarker cutoff design under various scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.