Abstract

Automatic detection and classification of cardiac arrhythmias with high accuracy and by using as little information as possible is highly useful in Holter monitoring of the high risk patients and in telemedicine applications where the amount of information which must be transmitted is an important issue. To this end, we have used an adaptive-learning-rate neural network for automatic classifi- cation of four types of cardiac arrhythmia. In doing so, we have employed a mix of linear, nonlinear, and chaotic features of the R-R interval signal to significantly reduce the required information needed for analysis, and substantially improve the accuracy, as compared to existing systems (both ECG-based and R-R interval- based). For normal sinus rhythm (NSR), premature ventricular contraction (PVC), ventricular fibrillation (VF), and atrial fibrillation (AF), the discrimination accu- racies of 99.59%, 99.32%, 99.73%, and 98.69% were obtained, respectively on the MIT-BIH database, which are superior to all existing classifiers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.