Abstract

Fault diagnosis is very important in ensuring safe and reliable operation in manufacturing systems. This paper presents an adaptive artificial immune classification approach for diagnosis of induction motor faults. The proposed algorithm uses memory cells tuned using the magnitude of the standard deviation obtained with average affinity variation in each generation. The algorithm consists of three steps. First, three-phase induction motor currents are measured with three current sensors and transferred to a computer by means of a data acquisition board. Then feature patterns are obtained to identify the fault using current signals. Second, the fault related features are extracted from three-phase currents. Finally, an adaptive artificial immune system (AAIS) is applied to detect the broken rotor bar and stator faults. The proposed method was experimentally implemented on a 0.37 kW induction motor, and the experimental results show the applicability and effectiveness of the proposed method to the diagnosis of broken bar and stator faults in induction motors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.