Abstract

An adaptive handwritten word recognition method is presented. A recursive architecture based on interaction between flexible character classification and deductive decision making is developed. The recognition process starts from the initial coarse level using a minimum number of features, then increases the discrimination power by adding other features adaptively and recursively until the result is accepted by the decision maker. For the computational aspect of a feasible solution, a unified decision metric, recognition confidence; is derived from two measurements: pattern confidence, evaluation of absolute confidence using shape features, and lexical confidence, evaluation of the relative string dissimilarity in the lexicon. Practical implementation and experimental results in reading the handwritten words of the address components of US mail pieces are provided. Up to a 4 percent improvement in recognition performance is achieved compared to a nonadaptive method. The experimental result shows that the proposed method has advantages in producing valid answers using the same number of features as conventional methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.