Abstract
A real-time hybrid simulation (RTHS) is a promising technique to investigate a complicated or large-scale structure by dividing it into numerical and physical substructures and conducting cyber-physical tests on it. The control system design of an RTHS is a challenging topic due to the additional feedback between the physical and numerical substructures, and the complexity of the physical control plant. This paper proposes a novel RTHS control strategy by combining the theories of adaptive control and robust control, where a reformed plant which is highly simplified compared to the physical plant can be used to design the control system without compromising the control performance. The adaptation and robustness features of the control system are realized by the bounded-gain forgetting least-squares estimator and the sliding mode controller, respectively. The control strategy is validated by investigating an RTHS benchmark problem of a nonlinear three-story steel frame The proposed control strategy could simplify the control system design and does not require a precise physical plant; thus, it is an efficient and practical option for an RTHS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.