Abstract

Variational mode decomposition has been widely applied to machinery fault diagnosis during these years. However, it remains difficult to set proper hyperparameters for the variational mode decomposition, including number of decomposed modes, initial center frequencies, and balance parameter. Moreover, the low efficiency of the existing variational mode decomposition methods hinders their applications to practical diagnostic task. This article proposes an adaptive and efficient variational mode decomposition method after thoroughly investigating its convergence property characteristic. A convergent tendency phenomenon is discovered and is explained mathematically for the first time. Motivated by the convergent tendency phenomenon, the proposed method rapidly and adaptively determines the number and the optimal initial center frequencies of signal latent modes with the guidance of the convergent tendencies of the initial center frequencies changing from small to large. In the proposed method, the number of decomposed modes and initial center frequencies are not hyperparameters that require to be set in advance any more, but are parameters learned from the analyzed signals. The determined parameters enable efficient extraction of the main latent modes contained in the analyzed signals. Therefore, the proposed variational mode decomposition method represents a major improvement in parameter adaption and decomposition efficiency over the existing variational mode decomposition methods. In the application for bearing fault diagnosis, the faulty modes are selected adaptively and the corresponding balance parameters are further optimized efficiently. Two experimental cases validate the proposed method and its superiority over the existing variational mode decomposition methods and the classical fast spectral kurtosis in bearing fault diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.