Abstract

As a special micro-motion feature of rotor targets, rotational angular velocity can provide a discriminant basis for target classification and recognition. In this paper, an adaptive and accurate method is proposed for estimating the rotational angular velocity of rotor targets via a Fourier coefficient interpolation algorithm that is based on modified frequency index residue initialization. The negative frequency complex exponential signal component is removed at each iteration to eliminate the estimation bias caused by spectrum superposition and improve the estimation accuracy. The frequency index residue initialization is modified, based on a normalized Fourier spectrum, to improve the estimable range of the rotational angular velocity and reduce the computational complexity of the algorithm. The simulation results show that the estimation performance of the proposed method achieves the Cramér–Rao lower bound and outperforms state-of-the-art methods in terms of the estimable range and estimation accuracy of the rotational angular velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.