Abstract

Frequent pattern mining using sliding window over data streams is commonly used due to its wide applicability. Determining suitable window size and detection of concept change are the major issues and can be addressed by having flexible window based on amount of changes in frequent patterns. For mining frequent patterns over data streams, vertical mining algorithms can be used. However, in these algorithms, size of transaction identifiers (tidsets) and the time for computation of intersection between tidsets is large. Moreover, presence of null transactions does not contribute any useful frequent patterns. A new algorithm called recent frequent pattern mining based on diffset with elimination of null transactions (RFP-DIFF-ENT) over data streams using variable size window is proposed. It stores difference of tidsets and eliminates null transactions which minimise memory and mining time. Experimental results show that proposed algorithm saves computation time, memory usage and minimises the number of frequent patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.