Abstract

Data aggregation algorithm aims to reduce the redundant information by gathering the sensed data, save energy, and prolong the lifetime of the network. However, the data aggregation technology will increase the network transmission delay of wireless sensor networks. Minimum-latency aggregation scheduling is designed to minimize the number of scheduled time slots to perform an aggregation. In this paper, we present an Adaptive Aggregation Scheduling Algorithm based on the Grid Partition (AASA-GP) in large-scale wireless sensor networks. By dividing the network into grids based on the geographical information, we allocate the channels according to the grid coordinates. Nodes with the same grid coordinates use the same channel and the adjacent grids use the different channels, so we can effectively avoid the wireless media transmission interference, increase the parallel transfer rate, and reduce the aggregation latency. Our extensive evaluation results demonstrate the superiority of the AASA-GP. For small-scale networks, the resultant latency is comparable with the best practice, and it is more suitable for large-scale wireless sensor networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.