Abstract
Traditionally, distributed query optimization techniques generate static query plans at compile time. However, the optimality of these plans depends on many parameters (such as the selectivities of operations, the transmission speeds and workloads of servers) that are not only difficult to estimate but are also often unpredictable and fluctuant at runtime. As the query processor cannot dynamically adjust the plans at runtime, the system performance is often less than satisfactory. In this paper, we introduce a new highly adaptive distributed query processing architecture. Our architecture can quickly detect fluctuations in selectivities of operations, as well as transmission speeds and workloads of servers, and accordingly change the operation order of a distributed query plan during execution. We have implemented a prototype based on the Telegraph system [Telegragraph project. Available from < http://telegraph.cs.berkeley.edu/>]. Our experimental study shows that our mechanism can adapt itself to the changes in the environment and hence approach to an optimal plan during execution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.