Abstract

This article deals with performance verification of architecture models of real-time embedded systems. Although real-time scheduling theory provides numerous analytical methods called feasibility tests for scheduling analysis, their use is a complicated task. In order to assist an architecture model designer in early verification, we provide an approach, based on real-time specific design patterns, enabling an automatic schedulability analysis. This analysis is based on existing feasibility tests, whose selection is deduced from the compliance of the system to a design pattern and other system's properties. Those conformity verifications are integrated into a schedulability tool called Cheddar. We show how to model the relationships between design patterns and feasibility tests and design patterns themselves. Based on these models, we apply a model-based engineering process to generate, in Ada, a feasibility test selection tool. The tool is able to detect from an architecture model which are the feasibility tests that the designer can apply. We explain a method for a designer willing to use this approach. We also describe the design patterns defined and the selection algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call