Abstract

A well-accepted view of developing circuits is that synapses must be active to mature and persist, whereas inactive synapses remain immature and are eventually eliminated. We question this long-standing view by investigating nonfunctional cholinergic nicotinic synapses in the superior cervical ganglia (SCG) of mice with a disruption in the alpha3 nicotinic receptor (nAChR) subunit gene, a gene essential for fast synaptic transmission in sympathetic ganglia. Using imaging and electrophysiology, we show that synapses persist for at least 2-3 months without postsynaptic activity; however, the presynaptic terminals lack high-affinity choline transporters (CHTs), and as a result, they are quickly depleted of transmitter. Moreover, we demonstrate with rescue experiments that CHT is induced by signals downstream of postsynaptic activity, converting immature terminals to mature terminals capable of sustaining transmitter release in response to high-frequency or continuous firing. Importantly, postsynaptic neurons must be continually active to maintain CHT in presynaptic terminals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.