Abstract

Sotatercept (ACE-011), a recombinant human fusion protein containing the extracellular domain of the human Activin receptor IIA, binds to and inhibits activin and other members of the transforming growth factor -β (TGF-β) superfamily. Administration of sotatercept led to a rapid and sustained increase in red blood cell (RBC) count and haemoglobin (Hb) in healthy volunteers (phase I clinical trials), but the mechanism is not fully understood. Mice treated with RAP-011 (murine ortholog of ACE-011) respond with a rapid (within 24 h) increase in haematocrit, Hb, and RBC count. These effects are accompanied by an equally rapid stimulation of late-stage erythroid precursors in the bone marrow (BM). RAP-011 also induces a significant increase in erythroid burst-forming units and erythropoietin, which could contribute to additional, sustained effects on RBC production. Further in vitro co-culture studies demonstrate that BM accessory cells are required for RAP-011 effects. To better understand which TGF-β family ligand(s) mediate RAP-011 effects, we evaluated the impact of several of these ligands on erythroid differentiation. Our data suggest that RAP-011 may act to rescue growth differentiation factor 11/Activin A-induced inhibition of late-stage erythropoiesis. These data define the mechanism of action of a novel agent that regulates RBC differentiation and provide the rationale to develop sotatercept for the treatment of anaemia and ineffective erythropoiesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.