Abstract

We consider an implementation of a recursive model-based active-set trust-region method for solving bound-constrained nonlinear non-convex optimization problems without derivatives using the technique of self-correcting geometry proposed in K. Scheinberg and Ph.L. Toint [Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization. SIAM Journal on Optimization, (to appear), 2010]. Considering an active-set method in bound-constrained model-based optimization creates the opportunity of saving a substantial amount of function evaluations. It allows US to maintain much smaller interpolation sets while proceeding optimization in lower-dimensional subspaces. The resulting algorithm is shown to be numerically competitive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call