Abstract

<p style='text-indent:20px;'>This paper proposes an active set solver for <inline-formula><tex-math id="M2">\begin{document}$ H_\infty $\end{document}</tex-math></inline-formula> min-max optimal control problems involving linear discrete-time systems with linearly constrained states, controls and additive disturbances. The proposed solver combines Riccati recursion with dynamic programming. To deal with possible degeneracy (i.e. violations of the linear independence constraint qualification), constraint transformations are introduced that allow the surplus equality constraints on the state at each stage to be moved to the previous stage together with their Lagrange multipliers. In this way, degeneracy for a feasible active set can be determined by checking whether there exists an equality constraint on the initial state over the prediction horizon. For situations when the active set is degenerate and all active constraints indexed by it are non-redundant, a vertex exploration strategy is developed to seek a non-degenerate active set. If the sampled state resides in a robust control invariant set and certain second-order sufficient conditions are satisfied at each stage, then a bounded <inline-formula><tex-math id="M3">\begin{document}$ l_2 $\end{document}</tex-math></inline-formula> gain from the disturbance to controlled output can be guaranteed for the closed-loop system under some standard assumptions. Theoretical analysis and numerical simulations show that the computational complexity per iteration of the proposed solver depends linearly on the prediction horizon.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call