Abstract

Lithium-rich layered oxides with high energy density are promising cathode materials, thus having attracted a large number of researchers. However, the materials cannot be commercialized for application so far. The crucial problem is the releasing of lattice oxygen at high voltage and resulting consequence, such as decomposition of electrolyte, irreversible phase transition of crystal structure, capacity degradation, and voltage decay. Therefore, capturing active-oxygen and further constructing a cathode-electrolyte-interface (CEI) protective layer via the scavenging effects should be a fundamental step to solve these issues. Herein, β-carotene with antioxidant properties is used as a scavenging molecule to achieve this goal. The control of active oxygen species effectively alleviates the decomposition of carbonate electrolyte under high voltage. The introduction of β-carotene additives can also be adjusted in situ to generate a customized CEI film, which is a double-layer structure with external organic components and internal inorganic components. Moreover, the β-carotene-containing electrolyte system exhibits better thermal stability. Benefited from these, Lithium-rich cathode of β-carotene-containing electrolyte shows outstanding long-life cycle stability, with 93.4% capacity retention rate after 200 cycles at 1 C; this electrochemical stability is superior to other electrolyte additive systems reported at present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.