Abstract

In the present paper, an active disturbance rejection control(ADRC) scheme via radial basis function(RBF) neural networks is designed for adaptive control of non-affine nonlinear systems facing hysteresis disturbance in which RBF neural network approximation is utilized to tackle the system uncertainties and ADRC is designed to real-time estimate and compensate disturbance with unknown backlash-like hysteresis. Combining the adaptive neural networks design with ADRC design techniques, a new dual-channel composite controller scheme is developed herein whereby adaptive neural networks are used as feed-forward inverse control and ADRC as closed-loop feedback control. Furthermore, as compared to adaptive neural networks control algorithm, the proposed RBF-ADRC dual-channel composite controller can guarantee that the desired signal can be tracked with a small domain of the origin and it is confirmed to be effective under Lyapunov stability theory and MATLAB simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.