Abstract
In the present paper, an active disturbance rejection control(ADRC) scheme via radial basis function(RBF) neural networks is designed for adaptive control of non-affine nonlinear systems facing hysteresis disturbance in which RBF neural network approximation is utilized to tackle the system uncertainties and ADRC is designed to real-time estimate and compensate disturbance with unknown backlash-like hysteresis. Combining the adaptive neural networks design with ADRC design techniques, a new dual-channel composite controller scheme is developed herein whereby adaptive neural networks are used as feed-forward inverse control and ADRC as closed-loop feedback control. Furthermore, as compared to adaptive neural networks control algorithm, the proposed RBF-ADRC dual-channel composite controller can guarantee that the desired signal can be tracked with a small domain of the origin and it is confirmed to be effective under Lyapunov stability theory and MATLAB simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.