Abstract

AbstractThis study concerns the resonance problems found in motion control, typically described in a two‐inertia system model as compliance between the motor and the load. We reformulate the problem in the framework of active disturbance rejection control (ADRC), where the resonance is assumed to be unknown and treated as disturbance, estimated and mitigated. This allows the closed‐loop bandwidth to go well beyond the resonant frequency, which is quite difficult using existing methods. In addition, such level of performance is achieved with minimum complexity in the controller design and tuning: no parameter estimation or adaptive algorithm is needed, and the controller is tuned by adjusting one parameter, namely, the bandwidth of the control loop. It is also shown that the proposed solution applies to both the velocity and position control problems, and the fact that ADRC offers an effective and practical motion control solution, in the presence of unknown resonant frequency within the bandwidth of the control system. Finally, frequency response analysis is performed where stability margin is obtained before the simulation results are verified in the hardware experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.