Abstract

BackgroundDisorders associated with excessive swelling of the lower extremities are common. They can be associated with pain, varicose veins, reduced blood pressure when standing and may cause syncope or fainting. The common physical remedy to these disorders is the use of compression stockings and pneumatic compression leg massagers, which both attempt to limit blood pooling and capillary filtration in the lower limbs. However, compression stockings provide a constant pressure, and their efficiency has been challenged according to some recent studies. Air compression leg massagers on the other hand, restricts patient mobility. In this work we therefore present an innovative active compression bandage based on the use of a smart materials technology that could produce intermittent active pressure to mitigate the symptoms of lower extremity disorders.MethodsAn active compression bandage (ACB), actuated by shape memory alloy (SMA) wires, was designed and prototyped. The ACB was wrapped around a calf model to apply an initial pressure comparable to the one exerted by commercial compression stockings. The ACB was controlled to apply different values of compression. A data acquisition board and a LabVIEW program were used to acquire both the pressure data exerted by the ACB and the electrical current required to actuate the SMA wires. An analytical model of the ACB based on a SMA constitutive model was developed. An optimizer was implemented to identify optimal parameters of the model to best estimate the performance of the ACB.ResultsThe maximum increase in pressure due to the SMA wires activation was 40.8% higher than the initially applied pressure to the calf model. The analytical model of the ACB estimated the behaviour of the ACB with less than 0.32 mmHg difference with the experimental results.ConclusionsThe prototyped ACB was able to apply an initial compression comparable to the one applied by commercial compression stockings. Activation of the ACB resulted in an increase of compression up to 9.06 mmHg. Comparison between analytical and experimental results showed the analytical model was suitable to predict the behaviour of the ACB.

Highlights

  • Gravitational forces affect venous return resulting in the accumulation of blood in the lower extremities when standing upright

  • One of the current remedies to prevent or delay syncope is the use of compression stockings. This is recommended for those suffering from recurrent orthostatic intolerance, according to the explanation that external counter-pressure of the lower extremities or abdomen can decrease venous pooling and capillary filtration, thereby increasing venous return [5,6]

  • We proposed the use of shape memory alloys (SMAs) for the design of an ambulatory active compression bandage (ACB)

Read more

Summary

Methods

An active compression bandage (ACB), actuated by shape memory alloy (SMA) wires, was designed and prototyped. The ACB was wrapped around a calf model to apply an initial pressure comparable to the one exerted by commercial compression stockings. The ACB was controlled to apply different values of compression. A data acquisition board and a LabVIEW program were used to acquire both the pressure data exerted by the ACB and the electrical current required to actuate the SMA wires. An analytical model of the ACB based on a SMA constitutive model was developed.

Results
Conclusions
Introduction
Results and discussions
Conclusion
Klabunde R: Cardiovascular Physiology Concepts
30. Goldberg DE
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call