Abstract
Activating germline mutations in STAT3 were recently identified as a cause of neonatal diabetes mellitus associated with beta-cell autoimmunity. We have investigated the effect of an activating mutation, STAT3K392R, on pancreatic development using induced pluripotent stem cells (iPSCs) derived from a patient with neonatal diabetes and pancreatic hypoplasia. Early pancreatic endoderm differentiated similarly from STAT3K392R and healthy-control cells, but in later stages, NEUROG3 expression was upregulated prematurely in STAT3K392R cells together with insulin (INS) and glucagon (GCG). RNA sequencing (RNA-seq) showed robust NEUROG3 downstream targets upregulation. STAT3 mutation correction with CRISPR/Cas9 reversed completely the disease phenotype. STAT3K392R-activating properties were not explained fully by altered DNA-binding affinity or increased phosphorylation. Instead, reporter assays demonstrated NEUROG3 promoter activation by STAT3 in pancreatic cells. Furthermore, proteomic and immunocytochemical analyses revealed increased nuclear translocation of STAT3K392R. Collectively, our results demonstrate that the STAT3K392R mutation causes premature endocrine differentiation through direct induction of NEUROG3 expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.