Abstract
Fluorescence imaging in the second near-infrared (NIR-II) window holds great promise for in vivo visualization of amyloid-β (Aβ) pathology, which can facilitate characterization and deep understanding of Alzheimer's disease (AD); however, it has been rarely exploited. Herein, we report the development of NIR-II fluorescent reporters with a donor-π-acceptor (D-π-A) architecture for specific detection of Aβ plaques in AD-model mice. Among all the designed probes, DMP2 exhibits the highest affinity to Aβ fibrils and can specifically activate its NIR-II fluorescence after binding to Aβ fibrils via suppressed twisted intramolecular charge transfer (TICT) effect. With suitable lipophilicity for ideal blood-brain barrier (BBB) penetrability and deep-tissue penetration of NIR-II fluorescence, DMP2 possesses specific detection of Aβ plaques in in vivo AD-model mice. Thus, this study presents a potential agent for non-invasive imaging of Aβ plaques and deep deciphering of AD progression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.