Abstract

We provide Vasiliev’s fully nonlinear equations of motion for bosonic higher spin gauge fields in four spacetime dimensions with an action principle. We first extend Vasiliev’s original system with differential forms in degrees higher than 1. We then derive the resulting duality-extended equations of motion from a variational principle based on a generalized Hamiltonian sigma-model action. The generalized Hamiltonian contains two types of interaction freedoms: one, a set of functions that appears in the Q-structure of the generalized curvatures of the odd forms in the duality-extended system; and the other, a set depending on the Lagrange multipliers, encoding a generalized Poisson structure, i.e. a set of polyvector fields of rank 2 or higher in target space. We find that at least one of the two sets of interaction-freedom functions must be linear in order to ensure gauge invariance. We discuss consistent truncations to the minimal type A and B models (with only even spins), spectral flows on-shell and provide boundary conditions on fields and gauge parameters that are compatible with the variational principle and that make the duality-extended system equivalent, on-shell, to Vasiliev’s original system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call