Abstract

A new action principle determining the dynamics of the Vlasov–Poisson system is presented (the Vlasov–Maxwell system will be considered in Part 2). The particle distribution function is explicitly a field to be varied in the action principle, in which only fundamentally Eulerian variables and fields appear. The Euler–Lagrange equations contain not only the Vlasov–Poisson system but also equations associated with a Lie perturbation calculation on the Vlasov equation. These equations greatly simplify the extensive algebra in the small-amplitude expansion. As an example, a general, manifestly Manley–Rowesymmetric, expression for resonant three-wave interaction is derived. The new action principle seems ideally suited for the derivation of action principles for reduced dynamics by the use of various averaging transformations (such as guiding-centre, oscillation-centre or gyro-centre transformations). It is also a powerful starting point for the application of field-theoretical methods. For example, the recently found Hermitian structure of the linearized equations is given a very simple and instructive derivation, and so is the well-known Hamiltonian bracket structure of the Vlasov–Poisson system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.