Abstract

BackgroundLytic polysaccharide monooxygenases (LPMOs) opened a new horizon for biomass deconstruction. They use a redox mechanism not yet fully understood and the range of substrates initially envisaged to be the crystalline polysaccharides is steadily expanding to non-crystalline ones.ResultsThe enzyme KpLPMO10A from the actinomycete Kitasatospora papulosa was cloned and overexpressed in Escherichia coli cells in the functional form with native N-terminal. The enzyme can release oxidized species from chitin (C1-type oxidation) and cellulose (C1/C4-type oxidation) similarly to other AA10 members from clade II (subclade A). Interestingly, KpLPMO10A also cleaves isolated xylan (not complexed with cellulose, C4-type oxidation), a rare activity among LPMOs not described yet for the AA10 family. The synergistic effect of KpLPMO10A with Celluclast® and an endo-β-1,4-xylanase also supports this finding. The crystallographic elucidation of KpLPMO10A at 1.6 Å resolution along with extensive structural analyses did not indicate any evident difference with other characterized AA10 LPMOs at the catalytic interface, tempting us to suggest that these enzymes might also be active on xylan or that the ability to attack both crystalline and non-crystalline substrates involves yet obscure mechanisms of substrate recognition and binding.ConclusionsThis work expands the spectrum of substrates recognized by AA10 family, opening a new perspective for the understanding of the synergistic effect of these enzymes with canonical glycoside hydrolases to deconstruct ligno(hemi)cellulosic biomass.

Highlights

  • Lytic polysaccharide monooxygenases (LPMOs) opened a new horizon for biomass deconstruction

  • KpLPMO10A is a putative chitin/cellulose‐oxidizing enzyme from auxiliary activity 10 (AA10) family KpLPMO10A, a putative LPMO-coding gene (558 base pairs subtracting those spanning the signal peptide) was isolated from the total DNA of K. papulosa (Additional file 1: Table S1) and cloned into pET-22b(+) vector downstream of the pelB signal peptide to permit the correct processing of the catalytic N-terminal histidine

  • KpLPMO10A was overexpressed in Escherichia coli cells and purified to homogeneity by Ni–NTA metal affinity and size-exclusion chromatography, with a yield of 0.75 mg per liter of culture

Read more

Summary

Introduction

Lytic polysaccharide monooxygenases (LPMOs) opened a new horizon for biomass deconstruction They use a redox mechanism not yet fully understood and the range of substrates initially envisaged to be the crystalline polysaccharides is steadily expanding to non-crystalline ones. Lytic polysaccharide monooxygenases (LPMOs) employ an oxidative step to cleave polysaccharides not yet fully understood at the atomic level [1, 2]. Given their flat surfaces, LPMOs are able to access the crystalline portion of polysaccharides releasing new ends that can elicit the activity of canonical enzymes, promoting a boosting on sugar release [3]. The literature is scarce concerning the activity of Corrêa et al Biotechnol Biofuels (2019) 12:117

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call