Abstract

Severe congenital neutropenia (CN) is characterized by a maturation arrest of myelopoiesis at the promyelocyte stage. Treatment with pharmacological doses of recombinant human granulocyte colony-stimulating factor (rh-G-CSF) stimulates neutrophil production and decreases the risk of major infectious complications. However, approximately 15% of CN patients develop myeloid malignancies that have been associated with somatic mutations in the G-CSF receptor (G-CSFR) and RAS genes as well as with acquired monosomy 7. We report a CN patient with chronic myelomonocytic leukemia (CMML) who never received rh-G-CSF. Molecular analysis demonstrated a somatic G-CSFR mutation (C2390T), which led to expression of a truncated G-CSFR protein in the CMML. Normal G-CSFR expression was unexpectedly absent in primary and cultured CMML. In addition, CMML cells showed monosomy 7 and an oncogenic NRAS mutation. In vitro culture revealed a G-CSF-dependent proliferation of CMML cells, which subsequently differentiated along the monocytic/macrophage lineage. Our results provide direct evidence for the in vivo expression of a truncated G-CSFR in leukemic cells, which emerged in the absence of rh-G-CSF treatment and transduces proliferative signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call