Abstract

An acoustooptic method for determining the velocities of longitudinal ultrasonic waves in a 105 to 108-Hz range in strongly absorbing (scattering) materials, when methods based on the sound transmission through a sample are unfit, is described. This method employs the acoustooptic determination of the acoustic impedance of the studied sample by measuring the reflection coefficient from the boundary between two contacting substances, namely, a liquid with the known (or measured) acoustic impedance and the studied solid sample. The method features the following advantages: (i) it is acceptable, when standard methods do not work due to the sound attenuation (scattering); (ii) there is no need for exact knowledge of sample sizes, the operating frequency, and the electromechanical coupling factor, and also for using reference samples; and (iii) the sound attenuation in a liquid and the distance from the sample surface to measurement points (required for calculations of the sound velocity) are easily measured. In this case, the velocity measurement error is usually 5–10%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.