Abstract

The paper discusses a new algorithm for passive (no-request) navigation in a water layer within the framework of ray theory in a flat-layered medium, when the dependence of the sound velocity on depth in the water layer is known. This algorithm is a combination of the Descartes method for the initial approximation and the subsequent Newton iteration method in the case of four synchronous beacons or the Gauss–Newton iteration method in the case of more than four synchronous beacons. Three Cartesian coordinates of an underwater object and the moment of synchronous emission of an acoustic signal by the beacons are found. Operation of the appropriate program is demonstrated for data close to actual. Computer simulation predicts an improvement in accuracy by tens of meters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call