Abstract

A low-powered acoustic micromixer has been presented in this paper. This newly invented system consists of an open-top mixing chamber and a permanent magnet mixer base. A voice coil is attached to the bottom of the mixing chamber with a polydimethylsiloxane membrane. The optimal driving frequency of each mixing test can be co-determined during (or prior to) the mixing via an electrical impedance ( $Z_{e}$ ) measurement owing to inherent electro-acoustic coupling of the system. When the mixer is driving at its resonance frequency found from the $Z_{e}$ , mixing efficiency is maximized characterizing millie-watt efficiency to achieve a mixing time scale comparable to other acoustic mixers. In addition, the present mixer demonstrates feasibility of a portable microfluidic system, wherein the degree of mixing may be tracked by $Z_{e}$ monitoring from a smart-phone, which may allow each experiment to be controlled remotely over existing network environment. We believe that our study demonstrates a feasible application of microelectromechanical systems technology for the Internet of Things. [2017-0119]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.