Abstract
Intercell transfers are inevitable for the manufacturing of complicated products, which disrupts the philosophy of cellular manufacturing and leads new challenges to the field of production scheduling. The issue of intercell scheduling is analyzed in the context of a cellular manufacturing system consisting of multiple single-processing machines and one batch-processing machine, which is derived from the actual manufacturing of complicated assemblies in the equipment manufacturing industry. Since the two types of machines are different from, even contrary to, each other in some constraint conditions, a combinational ant colony optimization (CACO) approach is developed in this paper, which designs two structures for the single-processing machines and the batch-processing machine, respectively. By updating pheromone trails integratedly and scheduling the single-processing operations and the batch-processing operations simultaneously, cooperative optimization for the two types of machines is achieved in the CACO. Minimizing the maximum completion time is taken as the scheduling objectives. Computational results show that the CACO has significant advantages comparing with other approaches and the CPLEX, and is especially suitable for the large dimension problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.