Abstract
Electrodeposition of colloidal gold nanoparticles onto a planar gold electrode was used to create a more favorable surface for the attachment of the enzyme acetylcholinesterase. Atomic force microscopy demonstrated that the gold nanoparticles roughened the surface consequently enhancing the interaction of the enzyme with the gold electrode. The enzyme-modified electrode sensor was utilized for the sensitive electrochemical detection of thiocholine at the gold surface after hydrolysis of acetylthiocholine by the immobilized enzyme. In the absence of the nanoparticle layer, the sensor response to acetylthiocholine was significantly reduced and the utility of the electrode was limited. The ability of the nanoparticle-based sensor to reliably measure concentrations of the organophosphate pesticide carbofuran at nM concentrations was demonstrated by monitoring the inhibition of the hydrolysis of acetylthiocholine. This relatively straightforward strategy is potentially valuable for the development of new devices for the sensitive detection of potentially dangerous and deadly neurotoxins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.