Abstract

In this paper, we introduce a new numerical procedure for simulations in geometrical optics that, based on the recent development of Eulerian phase-space formulations of the model, can deliver very accurate, uniformly resolved solutions which can be made to converge with arbitrarily high orders in general geometrical configurations. Following previous treatments, the scheme is based on the evolution of a wavefront in phase-space, defined as the intersection of level sets satisfying the relevant Liouville equation. In contrast with previous work, however, our numerical approximation is specifically designed: (i) to take full advantage of the smoothness of solutions; (ii) to facilitate the treatment of scattering obstacles, all while retaining high-order convergence characteristics. Indeed, to incorporate the full regularity of solutions that results from the unfolding of singularities, our method is based on their spectral representation; to enable a simple high-order treatment of scattering boundaries, on the other hand, we resort to a discontinuous Galerkin finite element method for the solution of the resulting system of equations. The procedure is complemented with the use of a recently derived strong stability preserving Runge–Kutta (SSP-RK) scheme for the time integration that, as we demonstrate, allows for overall approximations that are rapidly convergent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.