Abstract
<span>With the rapid development of technology in all life fields, and due to the huge daily needs for banking systems process, documents processing and other similar systems. The authentication became more required key for these systems. One of the successful system to verify the any person is the signature verification system. However, a reliable and accurate system is still needed. For this reason, the security challenge is take place via authentic signatures. However, a reliable and accurate system is still needed. For this reason, the security challenge is take place via authentic signatures. Therefore, this paper present a reliable signature verification system using proposed histogram of sparse codes (HSC) feature extraction approach and artificial neural networks (ANN) architecture for classification. The system achieved fast computing 0.09 ms and accurate verification results that is 99.7% using three different signature images datasets CEDAR, UTSig, and ICDAR.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.