Abstract

The support vector machine (SVM), as a novel type of learning machine, was used to develop a Quantitative Structure−Property Relationship (QSPR) model of the O−H bond dissociation energy (BDE) of 78 substituted phenols. The six descriptors calculated solely from the molecular structures of compounds selected by forward stepwise regression were used as inputs for the SVM model. The root-mean-square (rms) errors in BDE predictions for the training, test, and overall data sets were 3.808, 3.320, and 3.713 BDE units (kJ mol-1), respectively. The results obtained by Gaussian-kernel SVM were much better than those obtained by multiple linear regression, radial basis function neural networks, linear-kernel SVM, and other QSPR approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.