Abstract

The through-plane conductivity of a film sample is critically important because it largely affects the performance of batteries, capacitors, and thermoelectric devices. In this study, we developed a modified four-probe through-plane electrical conductivity measurement method using a coaxial structure. This method is general and works for free-standing film samples. We studied different samples including a steel sheet, highly oriented pyrolytic graphite, and conducting polymers. We confirmed metallic transportation in the steel sheet and hopping transportation in graphite in the through-plane direction by conducting low temperature measurements at 100 K. In the case of a conducting polymer poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate, the conductivity anisotropic ratio decreases with increasing in-plane conductivity. Temperature dependent measurements show two distinct activation energy regimes in the through-plane direction in PEDOT/PSS but almost no change in the in-plane electrical conductivity activation energy. This could be due to additional carrier paths that occur through the more disordered region (the PSS-rich region) in the through-plane direction. We also examined the Meyer–Neldel rule in PEDOT/PSS and concluded that PEDOT/PSS follows the anti-Meyer–Neldel rule, likely due to the high carrier density in the film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.