Abstract

In addition to behavioral testing, the efficacy of neuroprotective therapies applied after spinal cord injury (SCI) is commonly evaluated by means of histological quantification of spared neural tissue. The primary insult itself, but mainly the pathological processes of secondary injury are the underlying causes of spinal tissue degeneration, the extent of which depends on the injury severity and post-injury time. Under-estimation of tissue loss due to spinal cord shrinkage and subjective evaluation (impeding reproducibility) are substantial factors that negatively affect the final results. Moreover, processing large numbers of stained spinal cord sections is very time-consuming. To overcome the problem, our new quantification approach combines a modified method for predicting the cross-sectional area at the lesion site with semi-automatic measurement of spared neural tissue and cystic cavities, using freely accessible National Institutes of Health (NIH) ImageJ software, with a Java-based image processing program. Based on the histological parameters measured after differing compression-induced SCI and correlated with behavioral outcomes, we can conclude that our new method is relatively fast, accurate, and optimally reproducible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call